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Electron-microwave interactions 

F WATTt 
Research Laboratory for Solid State Physics, School of Physics, University of Newcastle 
upon Tyne, Newcastle upon Tyne, UK 

MS received 19 August 1971 

Abstract. The equations of motion of a relativistic electron interacting with a microwave 
electric field while undergoing circular motion in a homogeneous magnetic field have been 
solved numerically with the aid ofa  fast computer. The results serve toexplain the phenomena 
of wave amplification and maser action using classical electron trajectories and confirm the 
phase bunched acceleration of low energy electrons. 

1. Introduction 

Theoretical studies involving the interaction between microwaves and free electrons 
have proved difficult except in special cases. Only under limited conditions have the 
equations of motion been solved explicitly. 

Consoli and Mourier (1963) calculated the maximum energy attained by an electron 
undergoing cyclotron acceleration by microwaves for the case where the electron 
cyclotron frequency is initially equal to the frequency of the microwave field. Hakkenberg 
and Weenink (1964) have shown that this energy maximum is increased when the 
electron is injected into the interaction region such that the electron cyclotron frequency 
is initially greater than the microwave frequency. In both cases the additional condition 
was made that the electrons were accelerated from zero energy. 

When the electrons are initially relativistic, the problems associated with the inter- 
action become more difficult. Bohm and Foldy (1946) recognized that in the relativistic 
case the energy gain mechanism is dependent on the initial phase of the electron with 
respect to the microwave field. They provided an interpretation of the phase equation 
of the electron by means of a simple mechanical model, the biased pendulum. 
E E Schneider (1971, private communication) has shown that by using this model the 
energy equation can be solved explicitly in terms of elliptical integrals for the case of 
synchronous injection. Roberts and Buchsbaum (1964) used a pseudopotential approach 
to show that the energy equation for the relativistic electron initially out of synchronism 
can also be expressed explicitly. Because of the impractical aspects of solving such a 
formidable equation however, they considered the case for synchronous injection only. 

This paper shows some of the results obtained from solving numerically the equations 
of motion, not only for synchronous injection but also for the more complicated off- 
resonance case. 
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2. Mathematical formulation of the motion 

The relativistic equation of motion for an electron in a homogeneous magnetic field 
under the influence of a rotating microwave electric field is 

where p is the relativistic momentum 

y =  ( 1+---, mfc )’” 
and E and B are the microwave electric field and the homogeneous magnetic field 
respectively, given as 

E = (Eo cos ot, Eo sin ut, 0) 

B = (0, 0, B). 

In this configuration the homogeneous magnetic field is perturbed by a microwave 
magnetic field. It is assumed that this perturbation is negligible. 

Following Hakkenburg and Weenink (1964), it is convenient to use cylindrical 
coordinates (p, 4)  in momentum space. The equations of motion in a plane perpendicular 
to the magnetic field direction are then 

- dp = - eE cos(ot - 4)  
dt 

d 4  eB 
p -  = -eEsin(ot-$)+-p. 

dt moy 

Rewriting the above equations, we have 

- d p =  -eEcosX 
dt 

dX eB eE 
- = -- of-sin 
dt moy P 

where x = 4 - wt. The kinetic energy T of the electron is given by 

T = ( p v  + Ti)”2 - To 

where To is the rest energy. 

3. Computer program 

A combination of subroutines was developed to program an IBM 360 computer to 
calculate numerically the information required on the electron motion. Subroutine 
DRKGS (IBM systems reference library) was used to solve the two differential equations (1) 
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and ( 2 )  and print out values of p and x for selected operating parameters. This sub- 
routine is a fourth order integration procedure and uses the Runge-Kutta method for 
obtaining the solutions of initial value problems. A histogram plotting routine was 
included in the program to aid the handling of the results. 

4. Preliminary tests 

The equations of motion of a low energy (0.1 eV) electron injected in synchronism with 
an X band (9.3 GHz) microwave electric field of strength 600 Vm- '  were solved 
numerically for a selection of initial phase angles x o .  The variation of phase x with 
time is shown in figure 1. It is seen that a rapid change in phase occurs during the first 

I .m 
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Figure 1. A plot of the phase of a low energy electron with respect to the rotating electric 
field against number of orbital revolutions. 

few orbital revolutions. The electron, within a short time from injection, is focused 
about the phase 1 = 71, corresponding to the maximum accelerating field. This result 
is well known. At low energies the magnetic forces are small and therefore the motion 
is dominated by the rotating electric field. The previously circular trajectory is violently 
disrupted and a considerable change in phase may occur. 

The low energy electron injected in synchronism with the rotating electric field 
therefore gains energy at a rate which is independent of its initial phase. The gain in 
energy however is eventually limited by the effects of the increased mass as predicted 
by the special theory of relativity. The associated decrease in the electron cyclotron 
frequency w,, where w, = Be/m, causes a phase lag which eventually results in the 
deceleration of the particle. The maximum energy which the particle can attain is 
dependent on the rotating electric field strength E.  Figure 2 shows the energy profiles 
of the electrons for several different field strengths. The maximum energy to which the 
electrons are accelerated T, and the time taken in each case 5, confirm equations 
derived by Consoli and Mourier (1963) which predict a 3 power dependence between 
T, and E,  and 5, and E. 
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Figure 2. A plot of the kinetic energy of a low energy electron initially in synchronism with 
the microwave electric field against the number of orbital revolutions for several field 
strengths: A lo3 V m- ' ;  B 5 x lo2 V m- ' ;C  3 x lo2 V m - ' ;  D 2 x 10' V m- ' ;E  10' V m - ' .  

5. Results 

The following results refer to an electron with an energy of 5 keV interacting with an 
X band microwave field of strength 100 V m- '. 

5.1. The motion of a medium energy electron injected in synchronism with the rotating 
electric jield 

This is the case where the electron cyclotron frequency is initially equal to the frequency 
of the rotating microwave field. Figure 3 shows the energy and phase profiles of the 
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Figure 3. The motion of an electron injected in synchronism with the microwave electric 
field for a selection of initial phases. (a)  Plot of energy against number of orbital revolutions. 
(b) Plot of phase x against number of orbital revolutions. 



5 20 F Watt 

electron for a selection of initial phase angles. It is seen that, unlike the low energy case. 
the motion is dependent on the phase of the electron at injection. 

When the electron is injected in synchronism with an accelerating field, that is 
-n/2 < xo  < 4 2 ,  the electron initially experiences a phase slip as a result of the gain 
in kinetic energy. The energy gain continues until the electron phase is sufficiently 
retarded for the electron to experience a decelerating field. Similarly when the electron 
is injected in synchronism within a decelerating field, that is 4 2  < ;co < 3zi2, the 
particle experiences a loss in energy and an associated advance in phase. This loss of 
energy continues until the electron phase is sufficiently advanced for the electron to 
experience an accelerating field. 

It is seen in figure 3 that the electron energy oscillates about the injection value and 
the phase oscillates about x = 4 2 .  An exception to this is when xo = n/2, corresponding 
to injection at right angles to the rotating electric field. The electron experiences 
neither acceleration nor deceleration and the synchronism condition is maintained 
throughout the motion. 

From these results, the energy exchange at resonance between the microwave field 
and relativistic electrons can be predicted. Although the rate of energy transfer depends 
on the phase position occupied by the electrons, it can be seen that the energy gained 
by electrons injected with phase xo  is equal to the energy lost to the field by electrons 
starting at phab? n - xo .  For an initial random phase distribution therefore, the energy 
transfer and hence the power absorbed by the electrons from the microwave field is 
zero at resonance. 

5.2. T h e  motion of a medium energy electron injected out of synchronism with the rotating 
electric field 

The case considered first is where the energy of the electron is lower than that required 
for resonance and hence the electron cyclotron frequency is initially greater than the 
frequency of the microwave field. Figure 4 shows the energy and phase profiles of such 
an electron for a selection of input phases. 

Suppose the electron is injected into an acceleration phase zone, - n/2 < xo < 7~12. 
As discussed previously the electron accelerates until the phase slippage associated with 
the relativistic mass increase causes it to move into a deceleration phase zone. In this 
case however the rate ofphase slippage is retarded by the difference between the cyclotron 
and microwave frequencies. Initially therefore the electron spends more time in the 
acceleration zone than it would otherwise under synchronous injection conditions and 
hence experiences a greater increase in kinetic energy. 

For an electron injected into the deceleration zone, -n/2 < xo < 31r/2, the phase 
advance associated with the energy loss is enhanced by the difference between the cyclo- 
tron and microwave frequencies. Initially therefore the electron spends less time in 
the deceleration zone than it would at resonance and hence a reduction in the amount 
of energy lost is experienced. 

It is seen in figure 4 that if the electron is injected into the interaction region with 
an initial phase angle between E n  and then the synchronism condition is never 
fulfilled. In these cases the phase advance experienced by the electron arising from the 
difference between the cyclotron and microwave frequencies dominates any phase 
slippage suffered when the electron passes through the acceleration phase zone. The 
effect of this is that the electron energy never reaches the value necessary for synchronous 
motion and the electron cyclotron frequency always remains greater than the frequency 
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Figure 4. The motion of an electron injected out of synchronism with the microwave electric 
field for a selection of initial phases. (a) Plot of energy against number of orbital revolutions. 
(b)  Plot of phase x against number of orbital revolutions. 

of the microwave field. Obviously when the difference between the two frequencies at 
injection is greater, then the fraction of input phases for which this nonsynchronous 
type of motion prevails is correspondingly larger. 

For an initial random phase distribution; the electrons which are phase locked in 
time to the microwave field experience a net energy gain. Hence in the case considered 
above, CO, > CO, there is a net absorption of power by the electrons from the microwave 
field. 

The second case considered is where the energy of the electron is higher than that 
required for resonance and the electron cyclotron frequency is initially less than the 
frequency of the microwave field. Figure 5 shows the energy and phase profiles of such 
an electron for a selection of input phases. 

As expected, the difference between the cyclotron and microwave frequencies initially 
causes the electron to remain longer in the deceleration phase zone and hence lose more 
energy than it would otherwise at resonance. The electron which is injected into an 
acceleration phase region initially spends less time in this region than it would under 
synchronous injection conditions. Again it can be seen that for certain initial phase 
angles the synchronism condition is never fulfilled due to the masking of the phase 
advance suffered by an electron passing through a deceleration phase zone by the 
difference between the cyclotron and microwave frequencies. 

For an initial random phase distribution, the electrons which are phase locked in 
time to the microwave field experience a net energy loss. Hence for the case o, c o 
the microwave field absorbs energy from the electrons. 

Figure 5 also shows that these electrons are bunched together in phase after approxi- 
mately lo00 orbital revolutions. This phase bunching occurs while the majority of the 



522 F Watt 

0,0105 

N 0 0100 

$ 00095 

0 0090 

1000 2000 Moo 
I . 

Orbital revolutions 

Figure 5. The motion of an electron injected out of synchronism with the microwave electric 
field for a selection of initial phases. (a)  Plot of energy against number of orbital revolutions. 
(b )  Plot of phase x against number of orbital revolutions. 

electrons are in close synchronism with the decelerating field, thereby leading to coherent 
emission at the expense of the electron energy. 

6. Summary and concluding remarks 

The results of this work provide insight into several features of cyclotron resonance 
phenomena and associated electron-microwave interactions. 

The computer plots of the electron motion show the phase bunched cyclotron 
acceleration of low energy electrons and confirm equations predicting the maximum 
energy attainable by these electrons. For a relativistic electron the motion is seen to 
be dependent on the initial phase of the electron with respect to the microwave field. 
The wave amplification and stimulated emission observed in practice is shown to be 
caused by the phase bunching of electrons. The shape of the resonance absorption 
curve of medium energy electrons is predicted qualitatively from the electron motion 
and agrees with calculations derived by both quantum mechanical and classical methods 
(Schneider 1959, 1960). 

This type of numerical approach to the problems of electron-microwave interactions 
may be useful in explaining electron maser saturation effects and for investigating new 
methods of monochromatizing high energy electron beams of wide energy distribution. 
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